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Abstract

Motivation: With the rapid development of modern technologies, massive data are available for the systematic study of Alzheimer’s
disease (AD). Though many existing AD studies mainly focus on single-modality omics data, multi-omics datasets can provide a more
comprehensive understanding of AD. To bridge this gap, we proposed a novel structural Bayesian factor analysis framework (SBFA) to
extract the information shared by multi-omics data through the aggregation of genotyping data, gene expression data, neuroimaging
phenotypes and prior biological network knowledge. Our approach can extract common information shared by different modalities
and encourage biologically related features to be selected, guiding future AD research in a biologically meaningful way.
Method: Our SBFA model decomposes the mean parameters of the data into a sparse factor loading matrix and a factor matrix, where
the factor matrix represents the common information extracted from multi-omics and imaging data. Our framework is designed to
incorporate prior biological network information. Our simulation study demonstrated that our proposed SBFA framework could achieve
the best performance compared with the other state-of-the-art factor-analysis-based integrative analysis methods.
Results: We apply our proposed SBFA model together with several state-of-the-art factor analysis models to extract the latent common
information from genotyping, gene expression and brain imaging data simultaneously from the ADNI biobank database. The latent
information is then used to predict the functional activities questionnaire score, an important measurement for diagnosis of AD
quantifying subjects’ abilities in daily life. Our SBFA model shows the best prediction performance compared with the other factor
analysis models.
Availability: Code are publicly available at https://github.com/JingxuanBao/SBFA.
Contact: qlong@upenn.edu
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Introduction
With the rapid advances in modern biotechnologies such as high-
throughput genotyping and sequencing, and multimodal neu-
roimaging, researchers can investigate disease mechanisms from
multiple perspectives simultaneously. Multi-omics data integra-
tion enables us to discover new insights into biological mecha-
nism of complex diseases such as cancer and Alzheimer’s disease
(AD) [1].

AD diagnosis prediction or AD-related cognitive score predic-
tion can help uncover novel therapeutic targets for AD. Many
studies seek to predict the AD diagnosis or cognitive scores using
only imaging data [2–8] or only genetics data [9]. However, due
to the pathological heterogeneity of AD [10, 11], overly relying
on one type of data may undermine the power of analyses. To

boost the power of the existing AD research, studying AD from
both imaging and genetics/genomics perspectives may improve
prediction accuracy and reduce false negative signals [12–17]. In
our study, we proposed a novel structural Bayesian factor analysis
(SBFA) framework to extract the common information shared by
both imaging and genetics/genomics information, which can be
used to guide future AD research in a biologically meaningful
way.

Factor analysis is a popular statistical method for integra-
tive analysis of multi-modal data. The factor analysis aims to
describe variability among high-dimensional variables in terms
of a substantially lower number of unobserved variables called
latent factors. Many state-of-the-art factor-analysis-based meth-
ods have been proposed and applied to multi-omics data [18],
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for example to integratively define the subtypes of diseases such
as breast cancer [19–23] and lung cancer [19, 20]. The iCluster
[19] is a widely used factor analysis framework based on the
joint latent variable model. It can flexibly model different types
of genomics data in a single framework. It successfully models
the tumor subtypes as latent variables integrating the informa-
tion from multiple datasets. Later, Mo et al. [24] extended the
iCluster to the iCluster+ framework by allowing the simulta-
neous integration of continuous and discrete datasets. Another
highly cited integrative factor analysis method based on the
non-negative matrix factorization is joint and individual varia-
tion explained (JIVE) factor analysis [25], which extends iCluster
by adding a data-specific term [21]. A recently published inte-
grative factor analysis method, structural learning and integra-
tive decomposition of multi-view data (SLIDE) [26], represents
each data view via shared and individual components. SLIDE
has been successfully applied to multiple applications includ-
ing exploratory dimension reduction, association analysis and
consensus clustering.

There has been limited work on integrative analysis of multi-
omics and imaging data in a principled modeling framework in AD
studies. Some existing AD studies applied factor analysis models
trying to define AD subtypes solely in terms of neuropathology
[27, 28], molecular signatures [29, 30] or solely through imaging
phenotype [31, 32]. Additionally, none of these studies takes prior
biological network information into consideration. Network infor-
mation encourages the selection of related features (e.g. genes
belonging to the same pathway) and produces a more biologically
interpretable result.

In AD studies, the interactions or associations within or across
molecular pathways can be treated as network information. Many
databases can provide pathway-level interactions and associa-
tions such as Integrative Multi-species Prediction [33] and Kyoto
Encyclopedia of Genes and Genomes [34–36]. Some databases can
provide tissue-specific interactions and associations such as the
HumanBase [37–40]. Several existing studies achieved the incor-
poration of the biological network information using network-
based penalties [41, 42], or proper priors in the Bayesian statistics
framework [43–46]. One factor-analysis-based Bayesian integra-
tive study of multi-omics data proposed a generalized Bayesian
factor analysis (GBFA) framework by extending the iCluster+
framework [47]. They incorporate the prior biological network
information by employing the Markov random field prior. How-
ever, one limitation of the GBFA framework is the phase transition
problem [48, 49], which may require a massive hyperparameter
tuning process.

In this paper, we propose an SBFA model that assigns the
Laplace prior to the loading matrix for feature selection. It also
assigns a log-normal prior to the shrinkage parameter in the
Laplace prior and assigns a graph Laplacian prior [50, 51] to the
precision matrix in the log-normal prior. Our model formulation
enables smoothing shrinkage parameters for variables that are
connected in the biological graph. Our major contributions are
summarized as follows:

• We propose a novel structural Bayesian factor analysis frame-
work as a dimension reduction technique that yields latent
factors by integrating the genotyping data, gene expression
data, region-level brain imaging amyloid deposition data and
biological network information. Our SBFA framework is bio-
logically interpretable. As such, the common information
shared among multi-omics data learned from our model can
be used for various subsequent analyses.

• Our model can handle both continuous (e.g. gene expression
and imaging phenotypic traits) and discrete [e.g. genotyp-
ing values for single nucleotide polymorphisms (SNPs)] data
simultaneously. We successfully incorporate prior biological
information without suffering the phase transition problem
of the existing GBFA framework [47].

• Our work bridges the gap that there are few multi-omics stud-
ies applied to AD. We extracted more biologically meaningful
information from multiple modalities, and our framework
achieves the best prediction accuracy for the subsequent
machine learning prediction problems compared with the
other state-of-the-art factor-analysis-based methods.

The rest of the paper is organized as follows. We introduce
our proposed method including model formulation and compu-
tation in Section 2. We present and discuss the analyses of real
data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
in Section 3. We present our simulation experiment results in
Section 4 and conclude the paper with some discussion remarks
in Section 5.

Methodology
We propose a hierarchical Structural Bayesian Factor Analysis
model named SBFA (Figure 1). Our model serves as a dimension
reduction technique to extract common information from multi-
modal data.

Notation
All vectors and matrices in this paper are denoted by bold lower-
case letters or bold Greek letters. We use unbold lowercase letters
or Greek letters to denote the corresponding elements of the vec-
tor/matrix. The columns and rows of the matrix are indicated by
the subscription. For example, ai where i = 1, 2, . . . , n denotes the
ith element of vector a of length n; aji where j = 1, 2, . . . , p and i =
1, 2, . . . , n denotes the element at the jth row and ith column of the
matrix A with dimension p×n; ai = (a1i, a2i, . . . , api

)� represents the

ith column of matrix A and the ãj = (
aj1, aj2, . . . , ajn

)� represents
the jth row of the matrix A.

Structural Bayesian factor analysis model
Suppose we have multi-modal data with H modalities generated
from H different technologies. We denote each data modality by
Xh for h = 1, 2, . . . , H, where Xh can be any omics data such as
genotyping data, gene expression data, DNA methylation data and
metabolomics data. Additionally, it can be imaging phenotypic
traits such as brain gray matter density, brain volume, protein
aggregates and metabolism level in a specific area of the brain. We
denote the vertical concatenation of the multi-omics data to be

X =

⎡
⎢⎢⎢⎢⎣

X1

X2

...
XH

⎤
⎥⎥⎥⎥⎦ = (xji

) ∈ R
p×n,

where p = ∑H
h=1 ph and ph is number of features in dataset h,

j = 1, 2, . . . , p representing the jth feature, and i = 1, 2, . . . , n
representing the ith subject.

We assume that each feature of the dataset xji has the same
underlying distribution family πj governed by the mean parameter
μji for each sample i. Under the assumption that every subject is
independent of each other and every omic dataset is independent

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/24/2/bbad073/7071575 by Serials D

ivision user on 08 M
arch 2024



SBFA | 3

Figure 1. Structural Bayesian factor analysis framework. H represents the number of multi-modal data sets with each dataset denoted as Xh, h =
1, 2, . . . , H. The concatenation of all H data sets is denoted by X. We assume both continuous and discrete underlying distribution for each dataset
dominated by mean parameter μhi, h = 1, 2, . . . , H; i = 1, 2, . . . , n where n is number of samples. zi represents the ith column of factor matrix Z where
i = 1, 2, . . . , n. wji and λji represent the jth row and ith column of loading matrix W and shrinkage parameter for Laplacian prior where j = 1, 2, . . . , p; i =
1, 2, . . . , n and p is the total number of features. LN represents the log-normal distribution. μλ and �G denote the mean and precision matrix for log-
normal prior, respectively.

of each other conditioning on μ, we can write the following
likelihood function:

π(X|μ) =
∏

j

∏
i

πj(xji|μji).

Our SBFA framework can integrate multi-modal datasets with
both continuous and discrete data types simultaneously, includ-
ing Gaussian data, binomial data and negative binomial data.

• Gaussian distribution:
• Continuous xji is assumed to be normally distributed with

mean μji and precision ρj,

πj(xji|μji) =
ρ

1/2
j√
2π

e− 1
2 ρj(xji−μji)

2
, xji ∈ R,

where a gamma prior G(
ζj

2 ,
ζj

2 ) will be assigned to ρj.
• Binomial distribution:
• If the random variable xji follows a binomial distribution with

parameters nj trials and success probability

pji = eμji

1 + eμji
,

we will use the logit model with probability mass function
(pmf) shown as follows:

πj(xji|μji) =
(

nj

xji

)
eμjixji

(1 + eμji )nj
, xji = 0, 1, . . . , nj. (1)

The parameter nj is determined by data. Bernoulli distribution
is a special case for the binomial distribution with nj to be 1.

• Negative binomial distribution:
• To account for over-dispersion in counting data, we accom-

modate the negative binomial distribution

πj(xji|μji) =
(

rj + xji − 1
xji

)
eμjixji

(1 + eμji )rj+xji
, xji ≥ 0, (2)

where parameter rj is provided by data. The geometric distri-
bution is a special case for the negative binomial distribution
with rj to be 1.

The mean parameter μji are modeled by the generalized factor
analysis framework as

μji = mj + w̃�
j zi,

which, in matrix form, can be written as follows:

μ = m1� + WZ,

where Z ∈ R
L×n is the L × n latent factor shared by all modalities;

W ∈ R
p×L is the p × L factor loading matrix; w̃j ∈ R

L×1 is the
jth row of W and zi ∈ R

L×1 is the ith column of Z; m ∈ R
p×1,

and 1 ∈ R
n×1. Our goal is to estimate a biologically meaningful

low-rank representation (L � p) of μ to reduce the dimension
of original multi-modal data while preserving the common infor-
mation shared by multiple modalities. Such dimension reduction
can reduce computational expenses and prevent the potential
overfitting issue.

Z represents a low-dimensional latent driver for all H omics
and imaging modalities and can be used for subsequent analysis
in the applications on AD. For example, it can be used to cluster
the subjects to define different AD subtypes. On the other hand,
it can also serve as a predictor to predict the diagnosis-related
cognitive traits such as the functional assessment questionnaire
(FAQ) in the ADNI database, which will be described in Section 3.

Priors
Priors for W and Z
To obtain sparse estimates for W, we employ the Laplace prior
for W

log π(W|λ) = C +
p∑

j=1

L∑
l=1

log λjl −
p∑

j=1

L∑
l=1

λjl|wjl|,

where λjl is the shrinkage parameter. The prior distributions for
the entries in Z are the standard Gaussian distribution
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log π(Z) = C − 1
2

L∑
l=1

n∑
i=1

z2
li.

Prior for λ: incorporating graphical knowledge
One key contribution of our work is to incorporate biological
knowledge G = 〈P, E〉 via a structured prior for the shrinkage
parameter λ = (

λjl
)

1≤j≤p,1≤l≤L. In our setting, the graph informa-
tion for each omics dataset Xh is represented by 〈Ph, Eh〉, where
Ph = {1, . . . , ph} denotes the nodes and Eh denotes the edges.
The presence of an edge indicates that the corresponding pair
of nodes are correlated. We denote the Gh as the adjacency
matrix representation of 〈Ph, Eh〉. We combine the 〈Ph, Eh〉 to get
the graph information for the multiomics data 〈P, E〉 by diagonally
concatenating the adjacency matrix for each omics data Xh. Now,
the graph information of multiomics data can be represented
by G = 〈P, E〉 where P = {1, 2, . . . , p} with p = ∑

h ph and E ={(
I(h, j),I(h, k)

)
: (j, k) ∈ Eh, 1 ≤ h ≤ H

}
with I(h, j) ∈ P referring to

the index of the jth feature of modality h in the concatenated
graph G. Such a setup can help us to achieve the goal that given
independent latent factors, the only way a pair of variables can be
correlated conditionally on the rest is that they must load at least
one common factor. Mathematically, if xj and xk are connected in G
and wjl 
= 0 for some l, then wkl is encouraged to be nonzero. To this
end, we employed a log-normal prior to λjl with graph Laplacian
on the precision matrix

log π(α|�) = Cν2 + L
2

log |�|

− 1
2ν2

L∑
l=1

(αl − ν11)��(αl − ν11), (3)

where scalar ν1, the mean of αl, is a tuning parameter that controls
the overall shrinkage level of W. Scalar ν2, variance of αl, controls
the extent of individual shrinkage parameters αjl = log λjl adapted
to W and G. If ν2 = 0, we have λjl = eν1 and the prior reduces to the
Bayesian lasso. As ν2 increases, λjl are more adapted to W and G.
In our study, we fix the relative variance, known as the adaptivity,
to one to allow sufficient variability for λjl for all shrinkage levels
[47], i.e.

adaptivity = σ 2
λ

μ2
λ

= eν2 − 1 = 1,

or equivalently,

ν2 = log 2.

The intuition behind the choice of log-normal prior is as fol-
lows: (i) we employ the log-normal distribution for λ to incorpo-
rate the graph information via correlation and (ii) the shrinkage
parameter λ needs to be positive.

Prior for �: incorporating biological knowledge
We use the graph Laplacian prior [45] for � to incorporate the
graph information G, which is a symmetric and diagonally domi-
nant matrix

� =

⎡
⎢⎢⎢⎢⎢⎣

1 +∑j 
=1 ω1j −ω12 · · · −ω1p

−ω21 1 +∑j 
=2 ω2j · · · −ω2p

...
...

. . .
...

−ωp1 −ωp2 · · · 1 +∑j 
=p ωpj

⎤
⎥⎥⎥⎥⎥⎦ ,

where the elements in matrix �, ω = {ωjl : j < k}, are assigned by
the following prior:

π(ω) ∝ |�|− L
2

∏
(j,k)∈E

1≤j,k≤p

ω
aω−1
jk e−bωωjk I

(
ωjk > 0

) ∏
(j,k)/∈E

1≤j,k≤p

δ0(ωjk),

where δ0(·) is the Dirac delta function concentrated at 0 and I(·)
is the indicator function. E represents all connected edges in prior
biological graph information. In real data application, the graph
information can be summarized from gene–gene interaction net-
works for genetics data and from brain functional pathway infor-
mation for neuroimaging modality.

There are several mathematical intuitions behind the choice
of �. First of all, the diagonal dominance of the precision
matrix � ensures its positive definiteness. Second, to ensure
the positiveness of ω on the connected pairs, we incorporate
a gamma-like distribution on all the connected pairs and 0 on
those pairs without an edge. The overall tendency of positiveness
of the variance-covariance matrix ensures that increasing ωjk for
some 1 ≤ j, k ≤ p encourages an increase of the corresponding
correlation.

Model for heterogeneous data types
Our model can handle heterogeneous data types simultaneously.
In our framework, we use the exponential family for modeling
heterogeneous data types in X. For example, gene expression
and neuroimaging data can be modeled as continuous data with
normal distribution. SNP data can be modeled as two Bernoulli
random variables where each SNP feature can be represented by
the presence of homozygous major allele and the presence of
homozygous minor allele, respectively.

With three different underlying data distributions (Gaussian,
binomial, negative binomial), we can integrate the discrete expo-
nential family random variables by unifying the likelihood func-
tion via the following identity [52]:

eμjixji

(1 + eμji )bji
= 2−bji eκjiμji

∫ ∞

0
e−ρjiμ

2
ji/2

πji(ρji)dρji,

where κji = xji − bji

2 and π(ρji) = PG(bji, 0) ( Pólya-Gamma
distribution). By applying the identity to the binomial (Eq. (1))
and negative binomial (Eq. (2)) likelihood functions, we obtain the
unified likelihood function:

πj(x̃j|μ̃j) ∝ e− 1
2

∑
i ρji(μji−ψji)

2+∑i κjiμji π∗
j (ρ̃ j),

where the unknown parameters are shown in Table 1. Now, the
full posterior density can be written as

π(λ, ρ, W, Z, X) =π(W|λ)π(log λ|�)π(ω)π(Z)

·
∏

j

e− 1
2

∑
i ρji(μji−ψji)

2+∑i κjiμji π∗
j (ρ̃ j),

where ω = {ωjk}1≤j<k≤p.
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Table 1. Parameters for unified likelihood.

Data Type ψji κji bji π∗
j (ρj)

Gaussian Xji 0 NA ρji = ρj ∼ G(
ζj+n

2 ,
ζj
2 )

Binomial 0 Xji − nj
2 nj ρji ∼ PG(nj, 0)

Negative Binomial 0
Xji−rj

2 Xji + rj ρji ∼ PG(Xji + rj, 0)

Feature representation
In our model, new feature representation is learned from genotyp-
ing, gene expression and imaging datasets with biological graph
information. The high dimensional information is summarized
into the low dimensional latent variable Z for subsequent anal-
yses.

For example, our SBFA framework estimated low dimensional
latent features, which can serve as a predictor for machine learn-
ing algorithms. For unsupervised learning such as clustering,
the low dimensional features derived from our algorithm are
considered to be less noisy. We can apply the existing clustering
algorithm to cluster the subjects based on the new feature rep-
resentation. Supervised learning such as prediction often suffers
from overfitting with high dimensional input data. With the low
dimension feature representation derived from our algorithm,
we can reduce the risk of overfitting. Compared with the other
dimension reduction techniques, our SBFA is more biologically
interpretable.

Parameter estimation and computation
We estimate the factor loading matrix W and the location param-
eter m by finding the mode of their marginal posterior density, i.e.
the maximum a posteriori (MAP) estimator. Specifically, denote
the parameters to be estimated by � = (W, m) and the nuisance
parameters by � = (α, ρ, Z, ω). Then, the MAP estimator for W and
m is defined as

�̂ = argmax�

∫
π(�, �)d�,

where π(�, �) is the (joint) posterior density. To find the MAP,
we could utilize the expectation maximization (EM) algorithm
[53], which iteratively maximizes conditional expectations as
follows:

Q(t)(�) = E
(
log π(�(t), �)|�(t)) ,

�(t+1) = argmax�Q(t)(�),

where E denotes the expectation with respect to the conditional
distribution π(�|�(t)).

Unfortunately, the conditional expectation of log π(�, �) in our
model does not have a closed-form solution. Therefore, we choose
to use the variational EM algorithm [54, 55], where the conditional
distribution π(�|�) is approximated by a more tractable distribu-
tion family π̂(�) parameterized by ϒ. The variational parameter
ϒ can be determined by minimizing the Kullback–Leibler (KL)
divergence

ϒ(t) = argminϒ

(
−Ê log π(�|�(t)) + Ê log π̂(�)

)
,

where Ê denotes the expectation under π̂(�). Thus, the variational
EM is equivalent to maximizing

Q(�, ϒ) = Ê log π(�, �) − Ê log π̂(�),

which is called the evidence lower bound (ELBO) [55] as it always
satisfies Q(�, ϒ) ≤ log π(�), with respect to � and ϒ.

In our model, we use a product measure on α, ρ, Z, ω as
the variational (approximating) measure, i.e. π̂(α, ρ, Z, ω) =
π̂(α)π̂(ρ)π̂(Z)π̂(ω) where

π̂(α) ∝
L∏

l=1

e− 1
2 (αl−μα,l)

�
−1
α,l (αl−μα,l)

π̂ (ω) ∝
p∏

j=1

p∏
k=j+1

w
ajk−1
jk e−bjkwjk

π̂(ρ) ∝
p∏

j=1

e− 1
2

∑n
i=1 ρjiϕ

2
ji π∗

j (ρ̃ j)

π̂(Z) ∝
n∏

i=1

e− 1
2 (zi−μz,i)

T
−1
z,i (zi−μz,i),

where ajk’s, bjk’s, μα,l’s 
α,l’s, ϕji’s, μz,i’s and 
z,i’s are variational
parameters. Note that π̂(ρ) is called tilted Pólya-Gamma distribu-
tion.

E-step for ω: We update the variational parameters ajk and bjk

by matching the form of the equations between the expectation
for log variational measure and the expectation for log posterior
measure

ajk = aω

bjk = bω + 1
2ν2

L∑
l=1

(

α,l(k,k) − 2
α,l(j,k) + 
α,l(j,j)

)

+ 1
2ν2

L∑
l=1

(
μ2

α,lk − 2μα,ljμα,lk + μ2
α,lj

)
,

where j = 1, 2, . . . , p and k = 1, 2, . . . , p; μα,lk is the mean of the
variational measure for the kth element of αl; 
α,l(j,k) is the ith
row and jth column of the covariance matrix of the variational
measure for αl.

We then update the expectation of the ω using the mean
formula for gamma distribution by

μω,jk = ajk

bjk
,
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for j = 1, 2, . . . , p and k = 1, 2, . . . , p. Now, we have a graph Laplacian
matrix

� =

⎡
⎢⎢⎢⎢⎢⎣

1 +∑j 
=1 μω,1j −μω,12 · · · −μω,1p

−μω,21 1 +∑j 
=2 μω,2j · · · −μω,2p

...
...

. . .
...

−μω,p1 −μω,p2 · · · 1 +∑j 
=p μω,pj

⎤
⎥⎥⎥⎥⎥⎦ .

E-Step for α: Since there exists an eαjl term in the log posterior
distribution but not in the log variational measure, we cannot
update the variational parameters by matching the form of equa-
tions as we did when updating the ω (E-step for ω). Instead, we
need to maximize the ELBO function and the results give us that

μα,kl = −W
(

dkl

rkl
e− ckl

rkl

)
− ckl

rkl
,

where k = 1, 2, . . . , p, l = 1, 2, . . . , L, W represents the Lambert W
function [56] and

dkl =|wkl| e
1
2 diag(
α,l)k ;

rkl = 1
ν2

(1 +
p∑

j=1
j 
=k

μω,kj);

ckl = − 1
ν2

p∑
j=1
j 
=k

μω,kjμα,jl − ν1 + ν2

ν2
,

and diag(·) is an operator taking the diagonal elements of a square
matrix as a column vector; wkl represents the kth row and lth
column element of the matrix W; μα represents the mean matrix
for α; 
α,l represents the covariance matrix for lth column of α;
diag(
α,l)k represents the kth element of the vector diag(
α,l).

The update rule for the covariance matrix of αl, i.e., 
α,l, is
separated into two parts. In the first part, we update the off-
diagonal element of the 
α,l by


α,l(−j,j) = Cj
α,l(−j,−j)�(−j,j) (4)

for each j = 1, 2, . . . , p, where

Cj =
ν2 −

√
ν2

2 + 4tr(
α,l(−j,−j)�(j,−j)�(−j,j))
α,l(j,j)

2tr(
α,l(−j,−j)�(j,−j)�(−j,j))
.

The tr(·) operator defines the trace of the matrix, and the minus
sign in the subscript represents the matrix with the corresponding
row or column removed, or vector with the corresponding element
removed.

In the second part, we update the diagonal element of the 
α,l

as follows:


α,l(j,j) = tj + 1
cj

Wrje
−cj tj

(
cjaje

−cjtj
)

(5)

for each j = 1, 2, . . . , p, where the r-Lambert function Wr is defined
as the inverse of the function xex + rx [57] and

cj = 1
2

tj = 
α,l(j,−j)
α,l
−1
(−j,−j)
α,l(−j,j)

rj = �(j,j)

ν2|wjl|eμα,jl

aj = 1
|wjl|eμα,jl

,

where ·−1 is the inverse operator for a square matrix; wjl is the jth
row and lth column of the loading matrix W. We iteratively update

α,l for each j = 1, 2, . . . , p and l = 1, 2, . . . , L.

E-step for z: We update the precision matrix of the ith column
of factor matrix Z, i.e. 
−1

z,i , by matching the form of equations
between log posterior distribution and the log variational mea-
sure. For each i = 1, 2, . . . , n, we have


−1
z,i = I +

p∑
j=1

μρji w̃jw̃
�
j ,

where I is identity matrix; μρji is the mean for parameter ρji and
w̃j is the jth row of loading matrix W. For each i = 1, 2, . . . , n, we
update the mean parameter for zi by

μz,i = 
z,i

p∑
j=1

(
μρji ψji + κji − μρji mj

)
w̃j.

E-step for ρ: By matching the form of expectation of log pos-
terior and expectation of log variational measure, the variational
parameter ϕji for each j = 1, 2, . . . , p and i = 1, 2, . . . , n for ρ can be
updated by

ϕji =
(
w̃�

j 
z,iw̃j + (mj + w̃�
j μz,i − ψji)

2
) 1

2
,

where w̃j is the jth row of loading matrix W and 
z,i is the
variance-covariance matrix for variational measure of z.

If X is a discrete random variable, we have

μρji = bji(eϕji−1)

2ϕji(eϕji + 1)
,

whereas if X follows Gaussian distribution, we have

μρji = ζj + n

ζj +∑n
i=1 ϕ2

ji

.

M-step for w̃: We update the loading matrix row by row via
maximizing the ELBO function with respect to w̃j for each j =
1, 2, . . . , p. The optimization problem is solved by the dynamic
weighted lasso algorithm [58].

M-step for m: The location parameter m is updated by maxi-
mizing the ELBO function with respect to mj for each j = 1, 2, . . . , p

mj = 1∑n
i=1 μρji

(
n∑

i=1

κji −
n∑

i=1

μρji w̃
�
j μz,i +

n∑
i=1

μρji ψji

)
.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/24/2/bbad073/7071575 by Serials D

ivision user on 08 M
arch 2024



SBFA | 7

Table 2. Participant characteristics. Total number of subjects, age and sex are shown in this table. The mean ± sd for the age of all
subjects within each diagnosis group is reported. The number of male/female subjects within each diagnosis group is also shown.

Diagnosis CN EMCI LMCI AD Overall

Number 199 198 165 42 604
Age (mean ± sd) 74.54 ± 5.50 71.27 ± 7.22 73.14 ± 7.16 75.45 ± 9.43 73.15 ± 7.01
Sex (M/F) 98/101 109/89 101/64 26/16 334/270

Initialization
For the initialization, we define the matrix Y as an approximation
of the mean matrix μ as follows [47]:

yji =

⎧⎪⎪⎨
⎪⎪⎩

xji, for xji ∼ Gaussian;

logit(
xji+1
nj+2 ), for xji ∼ Binomial;

logit(
xji+1

rj+xji+2 ), for xji ∼ Negative Binomial.

.

The location vector m can be initialized by a fixed pre-specified
constant vector. If not, for each j = 1, 2, . . . , p, mj can be initialized
by the trimmed mean, median or mean of ỹj.

In our setting, we handle the problems by choosing W and Z
matrices close to orthogonal matrices via singular value decom-
position. Specifically, we have

Y − m1� = UDV�

W = UD

Z = V�,

where U and V are orthonormal matrices and D is diagonal matrix.

Hyperparameter tunning
We used the Bayesian information criterion (BIC) to tune the
hyperparameters. We select the hyperparameters with the lowest
BIC criteria

BIC = −2
∑

h

lh
(
Xh, μ̂h

)+ log n × df ,

where μ̂h is the estimated mean matrix of Xh; n is the number
of subjects and df denotes the degrees of freedom, which is
the number of non-zero elements in estimated factor loading
matrix. We try different sets of hyperparameters (L, ν1, aω) in both
simulation and real data analysis.

Analysis of ADNI Data
To demonstrate the usefulness of our proposed method in real
data analysis, we aimed to predict the FAQ cognitive score using
the latent factors learned through integrative analysis of the
genotyping, gene expression, brain regional level amyloid deposi-
tion, gene-gene interaction network and brain functional network
data from the ADNI biobank database. We also performed the
same analysis using existing factor analysis models (JIVE [25],
SLIDE [26], iCluster+ [24], GBFA [47]) as the benchmark.

Data description and data preprocessing
The genotyping data, gene expression data, demographic data and
imaging data used in the preparation of this article were obtained
from the ADNI database (adni.loni.usc.edu) [59–61]. The ADNI was
launched in 2003 as a public–private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary goal of ADNI has

been to test whether serial magnetic resonance imaging, positron
emission tomography (PET), other biological markers and clinical
and neuropsychological assessment can be combined to measure
the progression of mild cognitive impairment (MCI) and early AD.
Up-to-date information about the ADNI is available at www.adni-
info.org.

After data preprocessing steps and the common subjects
matching in each omics data, we have 604 subjects left with main
characteristics summarized in Table 2.

Demographic data preprocessing and cognitive score
Our demographic data and the cognitive score are extracted
from Quantitative Templates for the Progression of Alzheimer’s
Disease project in the Alzheimer’s Disease Modeling Challenge
(www.pi4cs.org/qt-pad-challenge). We use baseline age, gender,
education and the presence of APOE4 as our covariates. A test of
the subjects’ daily living activities, the FAQ [62], is extracted as our
dependent variable of real data analysis. All subjects with missing
values are excluded from our study.

Genotyping data preprocessing
For the genotyping data, we performed quality control (QC) using
the following criteria: genotyping call rate > 95%, minor allele
frequency > 5% and Hardy–Weinberg Equilibrium > 1e − 6. After
the QC, rs429358 (APOE) SNP was added to the genotyping data.
We prioritized the SNP markers based on the existing findings
from the major AD GWAS articles [63–67]. Our raw data were
obtained by additive recoding the number of minor alleles (–
recode A in PLINK1.9 [68]). Given that we want to model our
genotyping data as Bernoulli distribution, we further recoded the
genotyping data by the presence of homozygous major allele and
the presence of homozygous minor allele, which doubled the
number of input features for the genotyping dataset.

Gene expression data preprocessing
Gene expression data were produced using Affymetrix Human
Genome U219 Array (Affymetrix, Santa Clara, CA) for expression
profiling where the blood sample extraction, hybridization and
QC process could be found in [59]. In the raw data, one gene
can correspond to multiple probes. In our real data analysis, we
averaged all the probes within each gene across the subjects to
obtain the corresponding gene expression. We prioritize the AD-
related genes according to Disease Gene Network (DisGeNet) [69].
We extract all the genes that have gene–disease association scores
[69] greater than 0.15.

Imaging data preprocessing
For the neuroimaging data, participants with complete [18F]
florbetapir (AV45) PET data (measuring amyloid burden) were
included in our analysis. The AV45 PET scans were registered
to the Montreal Neurological Institute space, and the standard
uptake value ratio was computed by intensity normalization
using the cerebellar curs reference region. Region-of-interest-
level (ROI-level) AV45 measures were extracted based on the
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Algorithm 1 EM Algorithm: SBFA

1: Initialization: m, W, Z, �, μα , 
α , μρ , ϕ, and μz;
2: while Not Converge do
3: For j = 1, 2, . . . , p and p = 1, 2, . . . , p, set

ajk = aω; bjk = bω + 1
2ν2

L∑
l=1

(

α,l(k,k) − 2
α,l(j,k) + 
α,l(j,j)

)
+ 1

2ν2

L∑
l=1

(
μ2

α,lk − 2μα,ljμα,lk + μ2
α,lj

)
; μω,jk = ajk

bjk

4: For l = 1, 2, . . . , L and k = 1, 2, . . . , p, set

dkl = |wkl| e
1
2 diag(
α,l)k ; rkl = 1

ν2

⎛
⎜⎜⎝1 +

p∑
j=1
j 
=k

μω,kj

⎞
⎟⎟⎠ ; ckl = − 1

ν2

p∑
j=1
j 
=k

μω,kjμα,jl − ν1 + ν2

ν2
; μα,kl = − W

(
dkl

rkl
e− ckl

rkl

)
− ckl

rkl

5: For l = 1, 2, . . . , L and j = 1, 2, . . . , p, set

Cj =
ν2 −

√
ν2

2 + 4tr(
α,l(−j,−j)�(j,−j)�(−j,j))
α,l(j,j)

2tr(
α,l(−j,−j)�(j,−j)�(−j,j))
,


α,l(−j,j) = Cj
α,l(−j,−j)�(−j,j)

cj = 1
2

; tj = 
α,l(j,−j)
α,l
−1
(−j,−j)
α,l(−j,j); rj = �(j,j)

ν2|wjl|eμα,jl
; aj = 1

|wjl|eμα,jl


α,l(j,j) = tj + 1
cj

Wrje
−cj tj

(
cjaje

−cjtj
)

6: For i = 1, 2, . . . , n, set


−1
z,i = I +

p∑
j=1

μρji w̃jw̃
�
j ; μz,i = 
z,i

p∑
j=1

(
μρji ψji + κji − μρji mj

)
w̃j

7: For j = 1, 2, . . . , p and i = 1, 2, . . . , n, set

ϕji =
(
w̃�

j 
z,iw̃j + (mj + w̃�
j μz,i − ψji)

2
) 1

2
;

μρji = bji(eϕji−1)

2ϕji(eϕji + 1)
for discrete xji; μρji = ζj + n

ζj +∑n
i=1 ϕ2

ji

for Gaussian xji;

8: For j = 1, 2, . . . , p, set

ŵj = argmaxw̃j

(
1
2

w̃�
j

(
n∑

i=1

μρji (�z,i + μz,iμ
�
z,i)

)
w̃j −

n∑
i=1

(
κji − μρji (mj − ψji)

)
μ�

z,iw̃j +
(
eμα,j+ 1

2 diag�α,j

)� |w̃j|
)

9: For j = 1, 2, . . . , p, set

mj = 1∑n
i=1 μρji

(
n∑

i=1

κji −
n∑

i=1

μρji w̃
�
j μz,i +

n∑
i=1

μρji ψji

)

10: end while
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Figure 2. Workflow for real data analysis. G1 and G2 are genotyping data encoded by the presence of homozygous major allele and the presence of
homozygous alternative allele, respectively. I1 and E1 are normalized QTs representing the gene expression and neuroimaging data. Starting from the
multi-modal data, different factor analysis methods are used to extract the latent factors. The number of latent dimensions is tuned either through
the implemented function from the package or using BIC. After obtaining the latent factor, we use the latent factor as the input predictor to predict the
FAQ score. Linear regression with lasso, ridge and elastic net regularizations are used. The raw data (transpose of multi-omics data), covariates and raw
data plus covariates are also used for comparison purpose.

Glasser atlas [70], where 360 ROI-level quantitative traits (QTs)
were obtained by averaging all the voxel-level measures within
each ROI.

Biological network
We download the tissue-specific gene–gene interaction network
from GIANT [40] in HumanBase database (hb.flatironinstitute.
org). The imaging network is obtained from Glasser et al. [70],
which utilizes a supervised machine learning classifier to auto-
matically delineate and identify each cortical area from its neigh-
bors across a large majority of individual subjects based on multi-
modal information.

Real data analysis
In our real data analysis, we evaluate our SBFA framework by
predicting the FAQ score using our extracted latent factors, which
can be considered as a low-dimensional representation of the
multi-omics data sets. Our real data analysis pipeline is shown
in Figure 2.

Our framework starts from the dimention reduction of multi-
omics data including indicator variables for homozygous dom-
inant genotyping data G1, indicator variables for homozygous
recessive genotyping data G2, AV45 imaging measurements I1 and
gene expression E1. Specifically, G1 and G2 are binary matrices
with dimension R

111×604, the entries of which are assumed to
follow the Bernoulli distribution. I1 and E1 are normalized QTs
with dimension R

360×604 and R
152×604, which are assumed to be

normally distributed.
We estimate the latent factors from the multi-omics and imag-

ing dataset using our proposed SBFA method, in comparison
with several existing methods including iCluster+ [19, 71], JIVE
[25], SLIDE [26] and GBFA [47]. For the hyperparameters, we fix
(ν2 = log(2), bω = 1) and tune (aω, L, ν1). The best tuning results
are obtained by minimizing the BIC criteria, which is presented

in Figure 2. The best-tuned L is indicated by Loptimal, which is
the number of columns of the corresponding latent factors. For
our proposed SBFA model, the best-tuned hyperparameter set is
(Loptimal = 30, ν1 = 5.5, aω = 0.5). We then apply linear regression
with lasso, ridge and elastic net regularizations models to predict
the FAQ score using the latent factors learned from the afore-
mentioned methods as predictors. For comparison purposes, we
also include three other approaches that use (i) the demographic
covariates, (ii) the multi-omics and imaging data and (iii) the
multi-omics and imaging data together with the demographic
covariates as the input of machine learning models, respectively;
see Table 3.

For our training process, we first evenly split the subjects into
five folds where 4-folds are treated as the training-validation set
and 1-fold is treated as the testing set. Next, we apply 4-fold
cross-validation in our training-validation set to select the best
tuning hyperparameters according to the mean squared error
(MSE). The best tuning models are obtained from the validation
set and applied to the testing set to get the testing performance.
We repeat the splitting and tuning process 100 times by randomly
splitting the data 100 times with 100 different random seeds. We
summarized our real data analysis results in Table 3. The real data
analysis performance is reported using the mean of the training,
validation and testing MSE across 100 random splits. The standard
errors for the training and testing MSE are rounded to zero after
preserving three digits.

As shown in Table 3, compared with the results using original
multi-omics and imaging data and clinical variables, our SBFA
method does a better job in mitigating the overfitting problem. In
particular, the three prediction models trained using estimated
factors from our SBFA method outperform the models trained
using the original multi-omics, imaging and demographic
variables, in spite of the fact that our factor analysis used
only multi-omics and imaging data, not demographic variables.
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Table 3. Real data performance. The averaged MSE between the predicted FAQ score and the true FAQ score is reported across 100
random splittings. All standard errors are rounded to 0 after preserving 3 digits. For comparison purposes, we also include three other
approaches that use (A) the demographic covariates, (B) the multi-omics and imaging data and (C) the multi-omics and imaging data
together with the demographic covariates as the input of machine learning models.

Feature\Method Lasso Ridge ElasticNet

Train Validation Test Train Validation Test Train Validation Test

Raw data and clinical variables
Demographic covariates 0.626 0.955 0.953 0.592 0.934 0.949 0.596 0.938 0.945
Multi-omics and imaging 0.626 0.958 0.959 0.334 0.883 0.921 0.516 0.864 0.940
Multi-omics, imaging and covariates 0.622 0.957 0.956 0.333 0.886 0.933 0.517 0.864 0.940

Latent factors
JIVE 0.638 0.964 0.963 0.638 0.964 0.963 0.638 0.964 0.963
SLIDE 0.638 0.964 0.963 0.478 0.920 0.908 0.638 0.963 0.963
iCluster+ 0.638 0.964 0.963 0.637 0.974 0.961 0.638 0.964 0.963
GBFA 0.528 0.894 0.918 0.452 0.803 0.911 0.483 0.842 0.918
SBFA (proposed) 0.538 0.896 0.893 0.454 0.850 0.881 0.466 0.853 0.895

Compared with other existing factor analysis methods, our SBFA
method yields the best performance (smallest MSE) across all
comparisons (i.e. linear regression model with lasso, ridge and
elastic net regularizations).

Simulation Study
We compared the performance of our proposed SBFA framework
with other factor analysis frameworks including JIVE [25], SLIDE
[26] and GBFA model with spike and slab prior and Markov random
field prior [47] in the simulation study.

Simulation design
We evaluated our proposed SBFA framework in two different
simulation scenarios—low dimensional scenario and high dimen-
sional scenario with the number of features p = 150 and p =
300, respectively. We used the same number of samples in both
simulation scenarios with n = 160. To simulate multi-omics data,
we used the following model:

μh = mh1� + WhZ, h = 1, 2, . . . , H, (6)

where μh ∈ R
ph×n, mh ∈ R

ph×1,Wh ∈ R
ph×L and Z ∈ R

L×n. We choose
the ground truth latent variable L = 3 and the number of datasets
H = 6.

We design our ground-truth loading matrix W as shown in
Figure 3, where each row represents a pathway (h = 1, 2, . . . , 6).
The shaded areas are generated by continuous uniform distri-
bution with [1.5, 2.5] and every non-zero element of the loading
matrix W has a probability of 0.5 to flip its sign.

The ground truth factor matrix Z = [zi]i=1,...,n is simply gener-
ated by

zi ∼ N (0, I),

where 0 represents the zero vector, and I represents the identity
matrix.

The ground truth mean parameter for data X, i.e. μ =[
μ�

1 μ�
2 μ�

3 μ�
4 μ�

5 μ�
6

]�, is obtained by

μh = WhZ, h = 1, 2, . . . , 6,

Figure 3. Groundtruth setting for factor loading matrix W. Numbers
labeled on each column represent the latent variable. Numbers labeled on
rows represent the number of rows from the first row to the correspond-
ing row. All shaded area represents elements generated by U(1.5, 2.5) with
probability 0.5 to be multiplied by −1. All the other area contains only zero
elements.

where we assume location parameter m = 0. For the first setting in
each simulation scenario, we assume only Gaussian distribution
with mean μh and standard deviation 2 for all h ∈ {1, 2, . . . , 6}.
For the second setting in each simulation scenario, we assume
the first two omic datasets with p

3 features following Bernoulli
distribution with each element having probability p(1) = 1

1+e−μ(1)

to be 1. It mimics the data structure for the allele homozygosity
encoded genotyping dataset. For the second two omics datasets
with p

3 features, we assume that they are generated by a binomial
distribution with trail parameter independently sampled from the
set {n ∈ R : 1 ≤ n ≤ 15)}. For each feature and each subject, we
assume the success probability parameter p(2) = 1

1+e−μ(2) . For the
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Table 4. Simulation performance results for Gaussian only setting. ‘Dimension’ denotes our simulation scenario where ‘Low’ indicates
the simulation scenario with p = 150 and ‘High’ indicates the simulation scenario with p = 300. ‘Edge’ represents different graph
information where ‘Within’ denotes the ideal case that we use the graph information which only connects the features within each
pathway, and ‘Cross’ denotes the case that we use the graph information that connects the features not only within each pathway but
also some randomly selected nodes between pathways within each modality. ‘RRE (mean)’ is the average of the reconstruction error
between estimated μ̂ and the ground truth μ ratio to the true μ across 100 simulations. ‘RRE (se)’ is the standard error of the
reconstruction error between estimated μ̂ and the ground truth μ across 100 simulations.

Method Dimension Edge RRE (mean) RRE (se)

JIVE low 0.236552 0.006583
SLIDE low 0.167271 0.000722
iCluster low 0.221568 0.000935
GBFA (η = 0) low Within 0.198160 0.000848
GBFA (η = 1) low Within 0.190166 0.001088
SBFA (No G) low Within 0.182882 0.000743
SBFA (With G) low Within 0.180844 0.000699
GBFA (η = 0) low Cross 0.198160 0.000848
GBFA (η = 1) low Cross 0.185953 0.001015
SBFA (No G) low Cross 0.182882 0.000743
SBFA (With G) low Cross 0.181908 0.000704
JIVE high 0.180514 0.001741
SLIDE high 0.154596 0.000727
iCluster high 0.188864 0.000806
GBFA (η = 0) high Within 0.166760 0.000663
GBFA (η = 1) high Within 0.166246 0.000772
SBFA (No G) high Within 0.153240 0.000686
SBFA (With G) high Within 0.151277 0.000665
GBFA (η = 0) high Cross 0.166760 0.000663
GBFA (η = 1) high Cross 0.158246 0.000882
SBFA (No G) high Cross 0.153240 0.000686
SBFA (With G) high Cross 0.152455 0.000672

Table 5. Simulation performance results for mixture distribution setting. ‘Dimension’ denotes our simulation scenario where ‘Low’
indicates the simulation scenario with p = 150 and ‘High’ indicates the simulation scenario with p = 300. ‘Edge’ represents different
graph information where ‘Within’ denotes the ideal case that we use the graph information which only connects the features within
each pathway, and ‘Cross’ denotes the case that we use the graph information that connects the features not only within each
pathway but also some randomly selected nodes between pathways within each modality. ‘RRE (mean)’ is the average of the
reconstruction error between estimated μ̂ and the ground truth μ ratio to the true μ across 100 simulations. ‘RRE (se)’ is the standard
error of the reconstruction error between estimated μ̂ and the ground truth μ across 100 simulations.

Method Dataset Edge RRE (mean) RRE (se)

JIVE low 1.539543 0.014274
SLIDE low 1.519234 0.010254
iCluster low 1.407917 0.011129
GBFA (η = 0) low Within 0.220563 0.000961
GBFA (η = 1) low Within 0.220918 0.000993
SBFA (No G) low Within 0.197850 0.000877
SBFA (With G) low Within 0.196208 0.000864
GBFA (η = 0) low Cross 0.220563 0.000961
GBFA (η = 1) low Cross 0.217769 0.001006
SBFA (No G) low Cross 0.197850 0.000877
SBFA (With G) low Cross 0.199828 0.000874
JIVE high 1.551844 0.007424
SLIDE high 1.508521 0.006791
iCluster high 1.397968 0.007480
GBFA (η = 0) high Within 0.190666 0.000886
GBFA (η = 1) high Within 0.188583 0.000733
SBFA (No G) high Within 0.175308 0.000773
SBFA (With G) high Within 0.173823 0.000733
GBFA (η = 0) high Cross 0.190666 0.000886
GBFA (η = 1) high Cross 0.189722 0.000890
SBFA (No G) high Cross 0.175308 0.000773
SBFA (With G) high Cross 0.177781 0.000764
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Figure e1. Estimated factor loadings for the simulated dataset. The heatmap shows the factor loadings from iCluster, JIVE, SLIDE and GBFA without graph
information (GBFA(NE)), GBFA with graph information (GBFA(E)), SBFA without graph information (SBFA(NE)), SBFA with graph information (SBFA(E)) and
the ground truth. The results are derived from one simulated dataset in the low-dimensional scenario (p = 150). The optimal latent dimension (Loptimal)
for each model is indicated by the number of circles in the corresponding method track. Numbers beyond the range of (−1, 1) have the same color as
the boundaries (−1 and 1).

third two omics datasets with p
3 features, we assume that they

are generated to mimic the gene expression and imaging data,
which follows the Gaussian distribution with mean

[
μ�

5 μ�
6

]� and
standard deviation 2.

For the graph information, we evaluate our algorithm with 2
different settings:

• Within-pathway edges only: For the first graph information
setting, we randomly generate p

2 edges within each pathway
and do not add across pathway edges (i.e. in total, we have 3p
within pathway edges for p features). This is a simulation of
an ideal case.

• Within-pathway edges and cross pathway edges: For the second
graph information setting, besides the 3p within pathway

edges generated in the first setting, we also randomly gener-
ate p

2 cross-pathway edges within each modality (i.e. in total,
we have 3p within pathway edges and 1.5p cross-pathway
edges for p features).

The graph with within-pathway edges only represents the ideal
case where the graphical structure coincides with the sparsity
structure in W, while the cross-pathway edges mimic the real
data.

Results
In our simulation study, we seek to reconstruct the mean matrix
from the extracted low-rank representation. The performance
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is evaluated by the relative reconstruction error (RRE) between
estimated μ̂ and true μ using Frobenius norm

RRE = ‖μ − μ̂‖F

‖μ‖F
, (7)

where μ denotes the ground truth mean parameter; μ̂ represents
the estimated mean parameter.

To reduce the randomness of the performance, we generate
100 different datasets and apply our proposed algorithm to obtain
the new feature representation for each dataset. We fixed (ν2 =
log 2, bω = 1) and tuned the (aω, L, ν1) parameters using BIC. We
compare our SBFA framework with four different baseline factor
analysis algorithms including JIVE, SLIDE, iCluster+ and GBFA.

We first evaluate our results by calculating the mean and the
standard error of the RRE across 100 simulation datasets. It is
worth noting that the best-tuned Loptimal based on BIC is always
equal to or larger than the ground truth. For those Loptimal greater
than the ground truth, compared with the other baseline meth-
ods, the estimated loadings by SBFA for the extra latent dimen-
sion(s) are exactly 0 except for a small number of nonzero entries
(supplementary information Figure 1). The best-tuned results for
each method and each simulation setting are summarized in
Tables 4 and 5. Our proposed SBFA model always outperforms the
other baseline methods in both the Gaussian distribution setting
(Table 4) and the mixture distribution setting (Table 5).

In the Gaussian distribution setting (Table 4), without incor-
porating the graph information, our proposed model (SBFA No
G) shows significant improvement compared with JIVE, SLIDE,
iCluster+ and GBFA without graph information (GBFA η = 0). By
taking the graph information into consideration, our proposed
model (SBFA With G) can further achieve a smaller RRE and
significantly outperforms the GBFA model (GBFA η = 1) both with
and without cross pathway noise.

In the mixture distribution setting (Table 5), JIVE, SLIDE and
iCluster yield a large RRE compared with GBFA and SBFA models.
This is expected because those methods handle the discrete data
by treating them as continuous random variables. Although the
GBFA model and our proposed SBFA model can both handle
discrete and continuous data simultaneously, our SBFA model
outperforms the GBFA model in both low-dimensional simulation
and high-dimensional simulation scenarios with or without incor-
porating the graph information.

In summary, our proposed SBFA model can handle discrete and
continuous data simultaneously. Our simulation study demon-
strates that our proposed SBFA model can outperform the most
state-of-the-art factor analysis models. Moreover, our SBFA model
can incorporate the biological graph information as prior knowl-
edge so that our model can produce biologically interpretable
results.

Conclusion
In this article, we proposed a structural Bayesian factor analysis
model which decomposes the underlying mean parameters of
the data into a sparse factor loading matrix and factor matrix.
Our model employed the Laplace prior to achieve the sparse
estimation of the loading matrix and used a graph Laplacian prior
to incorporate the biological network information. Our method
can handle both discrete and continuous data simultaneously. We
derived an efficient variational EM algorithm to obtain the MAP
estimators of the parameters of interest.

Our SBFA framework is a useful dimension reduction technique
that yields latent factors that are biologically interpretable. As
such, the common information shared among multi-modal data
learned from our model can be used for various downstream
machine learning tasks including, but not limited to, prediction.
For example, another potential application is to use learned fac-
tors for clustering which can be used to define disease subtypes
based on genotyping data, imaging modalities and biological path-
ways.

Our simulation study demonstrates that our proposed SBFA
framework achieves the best performance compared with the
other state-of-the-art factor-analysis-based integrative methods.
Our work bridges the gap that there are few multi-omics studies
applied to AD. We used the multi-omics data from the ADNI
dataset to predict the FAQ score, which is an important evaluation
for the diagnosis of AD. The real data analysis results show the
advantages of our framework by comparing the prediction perfor-
mance between our SBFA framework and other state-of-the-art
factor-analysis-based integrative methods. Our method exhibited
the best prediction performance.

Key Points

• We propose a novel structural Bayesian factor analysis
framework as a dimension reduction technique that
yields latent factors by integrating the genotyping data,
gene expression data, region-level brain imaging amy-
loid deposition data and biological network information.
Our SBFA framework is biologically interpretable. The
common information shared among multi-omics data
learned from our model can be used for various sub-
sequent analyses such as supervised and unsupervised
machine learning.

• Our structural Bayesian factor analysis model can han-
dle both continuous (e.g. gene expression and imaging
phenotypic traits) and discrete [e.g. genotyping values
for single nucleotide polymorphisms (SNPs)] datatypes
simultaneously.

• Our work bridges the gap that there are few multi-omics
studies applied to Alzheimer’s disease. We applied our
framework to extract biologically meaningful informa-
tion shared by multiple modalities in the ADNI database.
We performed the subsequent machine learning analy-
ses to predict the Alzheimer’s disease-related cognitive
score using the extracted latent factors. Our structural
Bayesian factor analysis model achieves the best pre-
diction accuracy for the subsequent machine learning
prediction problems compared with the other state-of-
the-art factor-analysis-based methods.

Data availability
The source code is available through GitHub (https://github.com/
JingxuanBao/SBFA). The genotyping data, gene expression data,
demographic data, and imaging data used in the preparation of
this article were obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database. The data are available after
application through the ADNI website (http://adni.loni.usc.edu).
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Supplementary data
Supplementary data are available online at http://bib.oxfordjournals.
org/.
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